Compensator Control For Chemical Vapor Deposition Film Growth Using Reduced Order Design Models

نویسندگان

  • G. M. Kepler
  • H. T. Tran
  • H. T. Banks
چکیده

We present a summary of investigations on the use of proper orthogonal decomposition (POD) techniques as a reduced basis method for computation of feedback controls and compensators in a high pressure chemical vapor deposition (HPCVD) reactor that includes multiple species and controls, gas phase reactions, and time dependent tracking signals that are consistent with pulsed vapor reactant inputs. Numerical implementation of the model-based feedback control uses a reduced order state estimator, based on partial state observations of the fluxes of reactants at the substrate center, which can be achieved with current sensing technology. We demonstrate that the reduced order state estimator or compensator system is capable of substantial control authority when applied to the full system. ∗ Corresponding author: H.T. Banks, Center For Research in Scientific Computation, Box 8205, NCSU, Raleigh NC 27695 Telephone, 919-515-3968; Fax, 919-515-1636; Email, [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor

This paper reports on an interdisciplinary effort, which involves applied mathematicians, material scientists and physicists at North Carolina State University, to integrate new intelligent processing approaches with advanced mathematical modeling, optimization, and control theory to guide the construction and experimental implementation of a series of high pressure (up to 100 atm) organometall...

متن کامل

Evaluation of Vapor Deposition Techniques for Membrane Pore Size Modification

The suitability of three vapor deposition techniques for pore size modification was evaluated using polycarbonate track etched membranes as model supports. A feature scale model was employed to predict the pore geometry after modification and the resulting pure water flux. Physical vapor deposition (PVD) and pulsed plasma-enhanced chemical vapor deposition (PECVD), naturally, form asymmetric na...

متن کامل

LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design*

A systematic investigation of the influence of the process parameters temperature, pressure, total gas flow, and SiH2Cl2 :NH3 gas flow ratio on the residual stress, the refractive index, and its nonuniformity across a wafer, the growth rate, the film thickness nonuniformity across a wafer, and the Si/N incorporation ratio of low pressure chemical vapor deposition SixNy films has been performed....

متن کامل

Pulsed DC- Plasma Assisted Chemical Vapor Deposition of α-rich Nanostructured Tantalum Film: Synthesis and Characterization

This paper is an attempt to synthesize nanostructured tantalum films on medical grade AISI 316L stainless steel (SS) using pulsed DC plasma assisted chemical vapor deposition (PACVD). The impact of duty cycle (17-33%) and total pressure (3-10 torr) were studied using field emission scanning electron microscopy (FESEM), grazing incidence x-ray diffraction (GIXRD), nuclear reaction analysis (NRA)...

متن کامل

Comparison of Properties of Ti/TiN/TiCN/TiAlN Film Deposited by Cathodic Arc Physical Vapor and Plasma-assisted Chemical Vapor Deposition on Custom 450 Steel Substrates

This study investigated the effects of deposition techniques on the microstructural and tribological properties of Ti/TiN/TiCN/TiAlN multilayer coatings onto a Custom 450 steel substrate. The coatings were produced using cathodic arc physical vapor deposition (CAPVD) and plasma-assisted chemical vapor deposition (PACVD). The microstructural of the coatings was evaluated using (SEM), and phase f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999